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SIGNIFICANCE AND EXPLANATION
Nonlinear elliptic equations with isolated singularities occur in
physical problems with point sources. A good example is the Thomas-Fermi

3/2

theory of atoms and molecules which leads to the equation =Au + u =0 in

k
B\ U {a } .
i=1

The points {ai} correspond to the location of positive nuclei of
charge m;. Near a; the solution u has a singular behavior equivalent
to myE(x - a;) where E is the fundamental solution of ~A, i.e. E(x)
= (4ﬂ|x|)-1- A striking result of L. Véron provides a complete classifi-
cation of all singular solution_s, and shows that isolated singularities of
nonlinear problems are quite rigid. In this paper we present a new proof of
véron's result based on a simple scaling argument. We also establish that the
singular behavior at a point can be prescribed very much like a boundary

condition and determines uniquely the solution.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.

A R D R R R A T s
‘{ {‘J-"- ‘i'r Ve ) : _ }:13‘ VAL o * t" 'N. PNy “_J."_w. -,,‘\'\ -.'.-. _-\ { N :' _\.- -(‘..\

" o B Ar WW A AN ‘\-\\"‘;- e “ijﬁ:‘ -g.
"l';u 3 5‘ " '“ LY .;,'Y). ’,")-' b3 »53'.5 !“"."i :)‘L bﬂ ’* " A, ?’b% 3 ; '). " ”\\‘{ I 3:1»



SINGULAR SOLUTIONS FOR SOME SEMILINEAR ELLIPTIC EQUATIONS

Haim Brezis and Luc Oswald

Dedicated to Jim Serrin on his sixtieth birthday

1. Introduction

Lot By = {x ¢ 'y |x] <R} with N> 2. Consider a tunction u which satisfies

w e ¢ \{0}]), u> on B[O},
R R

(1)

~bu + uP =0 on B\[0} .
We are concerned with the behavior of u near x = 0. There are two distinct cases:
1) when p > N/(N=2) and (N > 3) it has been shown by Brezis - Véron [9] that u must
be smooth at 0 (See also Baras-Pierre (1] for a different proof). In other words,
isolated singularities are resovable.
2) When 1 < p < N/(N-2) there are solutions of (1) with a singularity at
x = 0. Moreover all singular solutions have been classified by Véron [22]. We recall his

result:

Theorem 1 Assume 1 < p < N/(N-2) and u satisfies (1). Then one of the following

holds:
(1) either u is smooth at 0,

(ii) or 1lim u(x)/E(x) = ¢ where ¢ is a constant which can take any value in the
x+0

interval (0,«),

(11i) or 1lim Ju(x) - l(p.N)lxl-z/(P-1)| =0 .

x+0

Here E(x) denotes the fundamental golution of =-A and ¢ = t(p,N) is the (unique)

positive constant C such that c]xl'z/(P'i) satisfies (1) -~ more precisely

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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1/(p=1)

2
£ = 2(p,N) = [TS:?T (ﬁET - N)]

We shall first present a proof of Theorem 1 which is simpler than the original proof of
Véron. In particular, it does not make use of Fowler's results [10] for the Emden

differential equation. Instead, it relies on some simple scaling arqument (see the proof

of Lemma 5) which is similar to the one used by Kamin-Peletier [12) for parabolic

equations.

Next, we emphasize that a singular behavior such as (ii) or (iii) can be prescribed

together with a boundary condition, and these determine uniquely the solution.
More precisely, let @ be a smooth bounded domain in R with o € @ and let

9 > 0 be a smooth function defined on 3. We consider the problem

u e 2@\ o}, u>0 on a\{o},

(2) ~Au + P =0 on R

u= g9 on N .
Theorem 2 Assume 1 < p < N/(N-2). Then:
(1) There is a unique solution u, of (2) vhich belongs to C2({) .

(ii) Given any constant c¢ ¢ (0, +») there is a unique solution u of (2) which

[~

satigfies

lim u(x)/E(x) = c .
x+0

(iii) There is a unique solution u, of (2) which satisfies

lim |x|2/(P-1)u(x) = 2(p,N)
x+0

In addition, 1limu = u and lim = u_ .,
c 0 ®
c+0 Céoo

singular solutions of (1) occur in the Thomas-Fermi theory with W =3 and p = 3/2

{see e.g. [13] for a detailed exposition). Other results dealing with singular solutions
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of nonlinear elliptic equations have been obtained by a number of authors: J. Serrin
{20), [21]), Véron and Vazquez (See the exposition in ([23]), P. L. Lions [14], W. M. Ni-
J. Serrin (16]. Semilinear parabolic equations with isolated singularities have been

considered by Brezis - Friedman (5], Brezis - Peletier - Terman (8], Kamin - Peletier

BRI B

[t2], oswalad [18].
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2. _Some preliminary facts

We recall some known results dealing with functions u satisfying (1).

Set a = 2/{(p-1) (for 1 < p < =),

Lemma 1 Assume U € Cz(BR) satisfies (1).

Then
u(0) < c(p,N)/R®

where C(p,N) is defined by C(p,N) = Max {2aN, «,(,ﬂ,}‘/trﬂ .
The proof of Lemma 1 uses a comparision function U of the same type as in Osserman

{17] (or lLoewner - Nirenberg [15]), namely set

.3
u(x) = —;:(p,n) ZRo on By .
(R = |x|%)
A direct computation shows that
s+ P >0 on B

By the maximum principle we see that

u<U on BR

and in particular u(0) < U(0).

lLemna 2 Assume u satisfies (1) with 1 < p < N/(N-2). Then, for
0 < |x} < R/2, we have
8
Lp,N) cp.  |x]|
ufx) < Ix|® (1+ £(p,N) 9 )
where B8 = 20 + 2 - N > a.

Lemma 2 is established in Brezis - Lieb [6] (proposition A.4) for the special case

where N = 3 and p = 3/2. The proof in the general case is just the same.

lemma 3 Assume 1t < p < N/(N-2) and let ¢ > 0 Dbe a constant. Then, there is a unique

function u satisfying

-d-




{u e P n o]y ,
u>»0 on  ®WMo},
(3)

~Au + of = & on ll“

We set u = W
lemma 3, as well as Lemma 4 below, are due to Benilan - Brezis (unpublished); the
ingredients for the proofs may be found in [2}, (3], [4) (and Alsoc [1] and [11]).
Finally, we assume that  is a smooth bounded domain in B with o € @ and that

¢ >0 is a smooth function defined as 23Q.

Lemma 4 Assume 1 < p < N/(N-2) and let ¢ > 0 be a constant.

Then, there is a unique function u satisfying

( u e 1P(2) n c2(@\{oh
u>0 on  a\{o}
(4
du+uPact on @

u =9 on 2 .
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3. A Scaling Argument

An important step in the proof of Theorem 1 is the following

lemma 5 Assume 1 < p < N/(N-2). Then we have

lm W _(x) = £]x]™ = W 00 .

g Ctew .
o Proof It is clear (by comparison) that Wc(x) is a nondecreasing function of c.
19
5\: Moreover we have
",-.
o/ -a
:.: W (x) < t|x]
Al (by letting R + ® in Lemma 2). Therefore lim wc(x) = W (x) exists pointwise (for
Cche
; A x # 0) and W_(x) < llxl-co The uniqueness of the solution of (3) implies that W,(x)
-4
...
.ﬂ

is radial and so is wn(x). Next, we observe that the function

u{x) = k“wc(kx) {k > 0)

e

satisfies

s §

-du(x) + uP(x) = x®Pcs(kx) = k“p-NCG(x) .

It follows, again by uniqueness, that

s IS

o vt oy
~ d

KW (kx) = W (x) .
c ckup-u

As ct® we gee that

k“w_(xx) =W_(x) .

Sl il i iy

‘Lo MY
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Choosing k = 1/|x| we obtain

-a -a
‘,,: W (x) = w__(T:-r)lxl = clx]|
5 ,
)X where C > 0 is some constant. !
: Finally we note that since
g _ . v N !
‘g:- s+ % =0 ta pU(R\[OD
AL
o) and
o) p
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it follows that

-t + WP =0 in p'(@\{o}).

This determines the value of the constant C to be C = .
There is a similar result in balls: Set u = V, to be the unique solution of

problem (4) with Q = BR.

Lemma 6 Assume 1 < p < N/(N-2). Then we have V_(x) = lim V (x) exists pointwise on
[

BR\{O} and moreover

W_(x) - R ¢ Vv (x) € W_(x) on B .

Proof It is again clear (by comparison) that V. (x) is a nondecreasing function of c.

Also we have

(5) 0 < Vé(x) < Né(x) .

It follows from (4) and (5) that
-A(Wc - vc) <0 on BR ’

and consequently Sup (w - v ) € Sup (w - V ) € Sup w = R % .

BR BB 33

The conclusion follows by letting ¢ + =, :

n
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" . 4. Proof of Theorem 1
. Throughout this section we suppose 1 < p < N/(N-2). Assume u satisfies (1) and
, .
4 set
)
L,
L]
: ) c = 1lim sup u(x)/E(x) .

,g. x+0
We distinguish three cases:

::: Case (1) c=0
o~ Cage (ii) 0 <c =
Ay Case (iii) c = =,
Cases (i) and (ii).
: Here, the main ingredient is the following:
"\ leemma 7 In cases (i) and (ii) the function u belongs to Ll: oc(BR) and satisfies
"‘: - .
» Au+uP-c°a in D'(3))
3 - for some constant Co*
Proof It is clear that u ¢ Iploc(’lt) since B ¢ L:OC(BR) and c < =,
We now use the same argument as in [7]: set
T--Au#u’:ﬂ'(ln). !
F
= 5
% Since the support of T is contained in {0}, it follows from a classical result about ;
-\ -
distributions (see [19]) that ]
" (6) T= J %8 . ;
; oc)a|<m |
:;:J We claim that Sy = 0 when |c| > 1. Indeed let [ ¢ D(BR) be any fixed function such 1
e W Y «
P, that (-1)'“'0“;(0) =<, for every a with |u| < m. Multiplying (6) through by :
LY o
“‘ Ct(x) = Z(x/e) we obtain a
7. - fusg, + f“"t - 3 c: clel
. 0¢|aj<m
>
<
4,
!q
1
A
o :
-i", - L)
i< ’
' K
> ' 'vl
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An easy computation - using the estimate u < CE - shows that
[fuaz | <c when N > 3

[fuag | < cltoge] +c when N =2 .

Since fupce + 0 as € * 0, we conclude that Cy ™ 0 for |a] » 1. Therefore we obtain

-bu + wP = c 8 in D'(Bp)

We conclude the proof of Theorem 1 in cases (i) and {(ii) with the help of the

following:
2 P
Lemma 8 Rssume u ¢ C (B \[0p) NI (B.) satisties
|
a0 on Bp ,
|
- = L]
su + o ey in  D'(Bp)

for some constant Cp*
We have

(1) 1f ¢y = 0, then u is smooth on By ,

(i1) if ¢y # 0, then 1lim u(x)/E(x) = ¢

x+0 0

Proof

(i) Assume cq = 0. Since u 1is subharmonic it follows that u ¢ L;oc(BR) and thus

o 1 2 ©
Au € Lloc(BR)' We deduce that u ¢ C (BR) and then u ¢ C (BR). In fact u e C (BR)

since, by the strong maximum principle, we have either u = 0 or u >0 or Bg-
{ii) Assume cg5 # 0. By the maximum principle we have

u < coE + C on BR/Z

and therefore
- - 14
Au > cOG (COE + 0)

> c°6 - C(EP + 1) on BR/Z
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An elementary computation leads to
u(x) » c4E - o(E) as x *0 .

and we conclude that 1lim u(x)/E(x) = ¢
x+0

0°
Remark 1 Assume S ¥ 0. The argument above provides in fact an estimate for |u - coxl
as x + 0. More precisely we have
a) If N=2 and 1 <p<w® or N=3 and 1 < p < 2, then

|u - cOEI <C on BR/Z

b) If N=3 and p = 2, then

lutx) - c B(x)| < c(|2og|x]] + 1) on Bp/2
c) If N=3 and 2<p<3 or N>»4 and 1 < p < N/(N=-2) then
2-(N~2)
futx) = c e(x)| < cfx| (N=2)p  on Bes2

and consequently

Iu(x)
E(x)

with v = N - (N-2)p > 0.

v
- col <C le on BR/2

Proof of Theorem 1 in the case (iii)

We first recall a result of Véron [22]) (Lemma 1.5):

Lemma 9 Assume u satisfies (1). Then, there is a constant C (depending only as p
and N) such that

Sup u(x) € C Inf u(x) for 0 < r < R/2.
x|=r x|=r

The conclusion of lLemma 9 is a simple consequence of Harnack's inequality and the estimate
of lLemma 1 -~ see [22] for the details.

We may now complete the proof of Theorem 1 with the help of the following:

femma 10 Assume u satisfies (1) and 1lim sup u(x)/E(x) = =, Then
x+0

- Y
Jutx) = 2[x|™%| < c|x| on B,

for some constants C = C(p,N,R) and y = y(p,N) > 0.

-10=
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Proof By lemma 2 we already have the estimate

wix) < 2)x]™ + ¢|x|T on B2
with
Yy=B-a=a+2~-N>0.

We now establish an estimate from below. Ilet x, * 0 be such that lim u(xn)/!(xn) -e,

set r, = |x,|, so that we obtain from Lemma 9

(7) Inf u(x)/E(x) 3, * .
x|=r

We recall that V. is the unigue solution of (4) when Q = BR , 80O that
vc < cE on BR’
Given any constant c > 0, we see (by (7)) that
ulx) » cE(x) for |x| =r and n large enough .
Therefore we obtain
u(x) > v (x) for [x| =z, anda n large enough .
applying the maximum principle in the domain {x ¢ o r, < |x| < R} we find that
u(x) >V (x) for r, < [x| < R and n large emough .
As n + » we conclude that
ulx) » v (x) on B \{0}
and ag ¢ + » we gee that
u(x) > v (x) on Bp\[o} .

In lLemma 6 we had the estimate
v (x) > ax|™® - R .

However it is not good enough to deduce conclusion (141) of Theorem 1. We need a better

estimate from below for v.(x); we claim that
{8) v (x) > t)x|™® (1 - (J%L)s) on B_,

where B is defined in Lemma 2.
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Clearly, it suffices to establish (8) for R = 1. The function V_ is radial and so

we write V_(r). We define the function v or (0,1) by the relation
vir?) = l":“v.(r)

so that 0 < v <1 on (0,1), v(1) = 0 and v(0) = 1. Using the relation =AV_ + V2 = 0
it is easy to deduce (as in the proof of Proposition A.4 [6]) that
8%t (e) + o) (VP Ne) - 1) =0 -for ¢t e (0,1).
Consequently v 1is concave and thus we have
vit) > 1 =-¢ e (0,1,
that is (8).

Remark 2 Wron [22] obtains in case (iii) an estimate of the form

jutx) - 2]x|™®| < cx|® with an exponent & which is better than Y = 8 - a.
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5. Proof of Theorem 2.

Case (i) is classical.

case (ii) The existence of a solution follows from Lemma 4 and 8.

CaTTA o A S Rt a T a e T A i R

Suppose now u satisfies (2) and lim u(x)/E(x) = c. We deduce from Lemma 7 and 8
x+0

that =Au + uf = cé; uniqueness follows from Lemma 4.
Cage (iii) We denote by u, the unique solution of (4) given by Lemma 4. We claim that

u, = lim u ” has all the required properties.
ctow

SIPLELNN |

Indeed u,(x) is a nondecreasing function of c¢. Fix R > 0 such that
2R < dist(0,9Q3). By Lemma 1 we have
uc(x) < C(p,N)R-“ for |x| = R.
Tﬁe maximum principle applied in the region
A = {x ety x| > r}
shows that, in ﬂn, 5

u_(x) < Max {sup e, C(P,N)R "} . :
¢ 0 7

Therefore u_(x) = lim uc(x) exists and v, satisfies (2). By comparison on BR we .
cte
have

Vc<uc on nR

and as c + ® we obtain V_< u_ on BR.

PSPty p

e

It follows that 1limlu_(x) =~ £|x| ™| = 0 (by Lemma 6 and Theorea 1).
x+0
‘

We turn now the question of uniqueness. Suppose u, and u, satisfy (2) and i

1m|x|°u1(x) =% for 4 = 1, 2. Lemma 10 implies that
x+0

|u1(x) - “2‘*” <c|x|Y on B,
On the other hand we have \

- - P.uPa .
Bluy - u,) 4wy~ u;=0 on a\{o}
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Applying the maximum principle in Qp we

Maxfu, - u | < ;l;xlu, - u,| < cr'

R R

and then we let R + 0 to conclude that Uy = uge

-14-
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